
Week 8 Lecture Notes

ML:Clustering

Unsupervised Learning: Introduction
Unsupervised learning is contrasted from supervised learning because it uses an unlabeled training set rather than a labeled one.

In other words, we don't have the vector y of expected results, we only have a dataset of features where we can �nd structure.

Clustering is good for:

Market segmentation

Social network analysis

Organizing computer clusters

Astronomical data analysis

K-Means Algorithm
The K-Means Algorithm is the most popular and widely used algorithm for automatically grouping data into coherent subsets.

1. Randomly initialize two points in the dataset called the cluster centroids.

2. Cluster assignment: assign all examples into one of two groups based on which cluster centroid the example is closest to.

3. Move centroid: compute the averages for all the points inside each of the two cluster centroid groups, then move the cluster centroid points to

those averages.

4. Re-run (2) and (3) until we have found our clusters.

Our main variables are:

K (number of clusters)

Training set

Where

Note that we will not use the x0=1 convention.

The algorithm:

The �rst for-loop is the 'Cluster Assignment' step. We make a vector c where c(i) represents the centroid assigned to example x(i).

We can write the operation of the Cluster Assignment step more mathematically as follows:

That is, each contains the index of the centroid that has minimal distance to .

By convention, we square the right-hand-side, which makes the function we are trying to minimize more sharply increasing. It is mostly just a

convention. But a convention that helps reduce the computation load because the Euclidean distance requires a square root but it is canceled.

Without the square:

With the square:

...so the square convention serves two purposes, minimize more sharply and less computation.

, ,…,x(1) x(2) x(m)

∈x(i)
R

n

= argmi || − |c(i) nk x(i) μk |2

c(i) x(i)

|| − || = || ||x(i) μk (− + (− + (− +.. .xi1 μ1(k))
2

xi2 μ2(k))
2

xi3 μ3(k))
2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

|| − | = || (− + (− + (− +.. . ||x(i) μk |2
xi1 μ1(k))

2
xi2 μ2(k))

2
xi3 μ3(k))

2

Randomly initialize K cluster centroids mu(1), mu(2), ..., mu(K)
Repeat:
 for i = 1 to m:
 c(i):= index (from 1 to K) of cluster centroid closest to x(i)
 for k = 1 to K:
 mu(k):= average (mean) of points assigned to cluster k

1
2
3
4
5
6

The second for-loop is the 'Move Centroid' step where we move each centroid to the average of its group.

More formally, the equation for this loop is as follows:

Where each of are the training examples assigned to group .

If you have a cluster centroid with 0 points assigned to it, you can randomly re-initialize that centroid to a new point. You can also simply

eliminate that cluster group.

After a number of iterations the algorithm will converge, where new iterations do not a�ect the clusters.

Note on non-separated clusters: some datasets have no real inner separation or natural structure. K-means can still evenly segment your data into

K subsets, so can still be useful in this case.

Optimization Objective
Recall some of the parameters we used in our algorithm:

 = index of cluster (1,2,...,K) to which example x(i) is currently assigned

= cluster centroid k (μk∈ℝn)

 = cluster centroid of cluster to which example x(i) has been assigned

Using these variables we can de�ne our cost function:

Our optimization objective is to minimize all our parameters using the above cost function:

That is, we are �nding all the values in sets c, representing all our clusters, and μ, representing all our centroids, that will minimize the average of

the distances of every training example to its corresponding cluster centroid.

The above cost function is often called the distortion of the training examples.

In the cluster assignment step, our goal is to:

Minimize J(…) with (holding �xed)

In the move centroid step, our goal is to:

Minimize J(…) with

With k-means, it is not possible for the cost function to sometimes increase. It should always descend.

Random Initialization
There's one particular recommended method for randomly initializing your cluster centroids.

1. Have K<m. That is, make sure the number of your clusters is less than the number of your training examples.

2. Randomly pick K training examples. (Not mentioned in the lecture, but also be sure the selected examples are unique).

3. Set equal to these K examples.

K-means can get stuck in local optima. To decrease the chance of this happening, you can run the algorithm on many di�erent random

initializations. In cases where K<10 it is strongly recommended to run a loop of random initializations.

Choosing the Number of Clusters
Choosing K can be quite arbitrary and ambiguous.

= [+ + ⋯ +] ∈μk
1

n
x()k1 x()k2 x()kn R

n

, ,…,x()k1 x()k2 x()kn mμk

c(i)

μk

μc(i)

J(,…, , ,…,) = || − |c(i) c(m) μ1 μK
1

m
∑m

i=1 x(i) μc(i) |2

mi J(c,μ)nc,μ

,…,c(1) c(m) ,…,μ1 μK

,…,μ1 μK

,…,μ1 μK

for i = 1 to 100:
 randomly initialize k-means
 run k-means to get 'c' and 'm'
 compute the cost function (distortion) J(c,m)
pick the clustering that gave us the lowest cost

1
2
3
4
5
6

The elbow method: plot the cost J and the number of clusters K. The cost function should reduce as we increase the number of clusters, and then

�atten out. Choose K at the point where the cost function starts to �atten out.

However, fairly often, the curve is very gradual, so there's no clear elbow.

Note: J will always decrease as K is increased. The one exception is if k-means gets stuck at a bad local optimum.

Another way to choose K is to observe how well k-means performs on a downstream purpose. In other words, you choose K that proves to be

most useful for some goal you're trying to achieve from using these clusters.

Bonus: Discussion of the drawbacks of K-Means
This links to a discussion that shows various situations in which K-means gives totally correct but unexpected results:

http://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

ML:Dimensionality Reduction
Motivation I: Data Compression

We may want to reduce the dimension of our features if we have a lot of redundant data.

To do this, we �nd two highly correlated features, plot them, and make a new line that seems to describe both features accurately. We place all

the new features on this single line.

Doing dimensionality reduction will reduce the total data we have to store in computer memory and will speed up our learning algorithm.

Note: in dimensionality reduction, we are reducing our features rather than our number of examples. Our variable m will stay the same size; n, the

number of features each example from to carries, will be reduced.

Motivation II: Visualization

It is not easy to visualize data that is more than three dimensions. We can reduce the dimensions of our data to 3 or less in order to plot it.

We need to �nd new features, (and perhaps) that can e�ectively summarize all the other features.

Example: hundreds of features related to a country's economic system may all be combined into one feature that you call "Economic Activity."

Principal Component Analysis Problem Formulation
The most popular dimensionality reduction algorithm is Principal Component Analysis (PCA)

Problem formulation

Given two features, and , we want to �nd a single line that e�ectively describes both features at once. We then map our old features onto this

new line to get a new single feature.

The same can be done with three features, where we map them to a plane.

The goal of PCA is to reduce the average of all the distances of every feature to the projection line. This is the projection error.

Reduce from 2d to 1d: �nd a direction (a vector) onto which to project the data so as to minimize the projection error.

The more general case is as follows:

Reduce from n-dimension to k-dimension: Find k vectors onto which to project the data so as to minimize the projection error.

If we are converting from 3d to 2d, we will project our data onto two directions (a plane), so k will be 2.

PCA is not linear regression

In linear regression, we are minimizing the squared error from every point to our predictor line. These are vertical distances.

In PCA, we are minimizing the shortest distance, or shortest orthogonal distances, to our data points.

More generally, in linear regression we are taking all our examples in x and applying the parameters in Θ to predict y.

In PCA, we are taking a number of features , and �nding a closest common dataset among them. We aren't trying to predict any

result and we aren't applying any theta weights to the features.

Principal Component Analysis Algorithm

x(1) x(m)

,z1 z2 z3

x1 x2

∈u(1)
R

n

, ,…,u(1) u(2) u(k)

, ,…,x1 x2 xn

http://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

Before we can apply PCA, there is a data pre-processing step we must perform:

Data preprocessing

Given training set: x(1),x(2),…,x(m)

Preprocess (feature scaling/mean normalization):

Replace each with

If di�erent features on di�erent scales (e.g., = size of house, = number of bedrooms), scale features to have comparable range of values.

Above, we �rst subtract the mean of each feature from the original feature. Then we scale all the features

We can de�ne speci�cally what it means to reduce from 2d to 1d data as follows:

The z values are all real numbers and are the projections of our features onto .

So, PCA has two tasks: �gure out and also to �nd .

The mathematical proof for the following procedure is complicated and beyond the scope of this course.

1. Compute "covariance matrix"

This can be vectorized in Octave as:

We denote the covariance matrix with a capital sigma (which happens to be the same symbol for summation, confusingly---they represent entirely

di�erent things).

Note that is an n×1 vector, is an 1×n vector and X is a m×n matrix (row-wise stored examples). The product of those will be an n×n

matrix, which are the dimensions of Σ.

2. Compute "eigenvectors" of covariance matrix Σ

svd() is the 'singular value decomposition', a built-in Octave function.

What we actually want out of svd() is the 'U' matrix of the Sigma covariance matrix: . U contains , which is exactly what we

want.

3. Take the �rst k columns of the U matrix and compute z

We'll assign the �rst k columns of U to a variable called 'Ureduce'. This will be an n×k matrix. We compute z with:

 will have dimensions k×n while x(i) will have dimensions n×1. The product will have dimensions k×1.

To summarize, the whole algorithm in octave is roughly:

Reconstruction from Compressed Representation
If we use PCA to compress our data, how can we uncompress our data, or go back to our original number of features?

To go from 1-dimension back to 2d we do: .

=μj
1

m
∑m

i=1 x
(i)
j

x
(i)
j −x

(i)
j μj

x1 x2

=x
(i)
j

−x
(i)
j μj

sj

Σ = ()(
1

m
∑m

i=1 x(i) x(i))T

u(1)

,…,u(1) u(k) , ,…,z1 z2 zm

Σ = ()(
1

m
∑m

i=1 x(i) x(i))T

x(i) (x(i))T

U ∈ R
n×n ,…,u(1) u(n)

= Ureduc ⋅z(i) eT x(i)

UreduceZ T Ureduc ⋅eT x(i)

z ∈ R → x ∈ R
2

(1) (1)

Sigma = (1/m) * X' * X;

[U,S,V] = svd(Sigma);

Sigma = (1/m) * X' * X; % compute the covariance matrix
[U,S,V] = svd(Sigma); % compute our projected directions
Ureduce = U(:,1:k); % take the first k directions
Z = X * Ureduce; % compute the projected data points

1
2

1
2

1
2
3
4
5

We can do this with the equation: .

Note that we can only get approximations of our original data.

Note: It turns out that the U matrix has the special property that it is a Unitary Matrix. One of the special properties of a Unitary Matrix is:

 where the "*" means "conjugate transpose".

Since we are dealing with real numbers here, this is equivalent to:

 So we could compute the inverse and use that, but it would be a waste of energy and compute cycles.

Choosing the Number of Principal Components
How do we choose k, also called the number of principal components? Recall that k is the dimension we are reducing to.

One way to choose k is by using the following formula:

Given the average squared projection error:

Also given the total variation in the data:

Choose k to be the smallest value such that:

In other words, the squared projection error divided by the total variation should be less than one percent, so that 99% of the variance is

retained.

Algorithm for choosing k

1. Try PCA with k=1,2,…

2. Compute

3. Check the formula given above that 99% of the variance is retained. If not, go to step one and increase k.

This procedure would actually be horribly ine�cient. In Octave, we will call svd:

Which gives us a matrix S. We can actually check for 99% of retained variance using the S matrix as follows:

Advice for Applying PCA

The most common use of PCA is to speed up supervised learning.

Given a training set with a large number of features (e.g.) we can use PCA to reduce the number of features in each

example of the training set (e.g.).

Note that we should de�ne the PCA reduction from to only on the training set and not on the cross-validation or test sets. You can apply

the mapping z(i) to your cross-validation and test sets after it is de�ned on the training set.

Applications

Compressions

Reduce space of data

Speed up algorithm

Visualization of data

Choose k = 2 or k = 3

Bad use of PCA: trying to prevent over�tting. We might think that reducing the features with PCA would be an e�ective way to address over�tting.

It might work, but is not recommended because it does not consider the values of our results y. Using just regularization will be at least as e�ective.

= ⋅x
(1)
approx Ureduce z(1)

=U−1 U ∗

=U−1 U T

|| − |
1

m
∑m

i=1 x(i) x
(i)
approx |2

|| |
1

m
∑m

i=1 x(i) |2

≤ 0.01
|| − |

1

m
∑

m
i=1 x(i) x

(i)
approx |

2

|| |
1

m
∑m

i=1 x(i) |2

,z,xUreduce

≥ 0.99
∑

k
i=1 Sii

∑n
i=1 Sii

,…, ∈x(1) x(m)
R

10000

,…, ∈z(1) z(m)
R

1000

x(i) z(i)

[U,S,V] = svd(Sigma)1
2

Don't assume you need to do PCA. Try your full machine learning algorithm without PCA �rst. Then use PCA if you �nd that you need it.

