You are currently looking at version 1.0 of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.


Applied Machine Learning, Module 1: A simple classification task

Import required modules and load data file

In [1]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split

fruits = pd.read_table('readonly/fruit_data_with_colors.txt')
In [2]:
fruits.head()
Out[2]:
fruit_label fruit_name fruit_subtype mass width height color_score
0 1 apple granny_smith 192 8.4 7.3 0.55
1 1 apple granny_smith 180 8.0 6.8 0.59
2 1 apple granny_smith 176 7.4 7.2 0.60
3 2 mandarin mandarin 86 6.2 4.7 0.80
4 2 mandarin mandarin 84 6.0 4.6 0.79
In [3]:
# create a mapping from fruit label value to fruit name to make results easier to interpret
lookup_fruit_name = dict(zip(fruits.fruit_label.unique(), fruits.fruit_name.unique()))   
lookup_fruit_name
Out[3]:
{1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}

The file contains the mass, height, and width of a selection of oranges, lemons and apples. The heights were measured along the core of the fruit. The widths were the widest width perpendicular to the height.

Examining the data

In [5]:
# plotting a scatter matrix
from matplotlib import cm

X = fruits[['height', 'width', 'mass', 'color_score']]
y = fruits['fruit_label']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# random_state provides a seed to the internal random number generator. 

cmap = cm.get_cmap('gnuplot')
scatter = pd.scatter_matrix(X_train, c= y_train, marker = 'o', s=40, hist_kwds={'bins':15}, figsize=(9,9), cmap=cmap)
In [7]:
# plotting a 3D scatter plot
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
ax.scatter(X_train['width'], X_train['height'], X_train['color_score'], c = y_train, marker = 'o', s=100)
ax.set_xlabel('width')
ax.set_ylabel('height')
ax.set_zlabel('color_score')
plt.show()

Create train-test split

In [8]:
# For this example, we use the mass, width, and height features of each fruit instance
X = fruits[['mass', 'width', 'height']]
y = fruits['fruit_label']

# default is 75% / 25% train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Create classifier object

In [9]:
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors = 5)

Train the classifier (fit the estimator) using the training data

In [10]:
knn.fit(X_train, y_train)
Out[10]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')

Estimate the accuracy of the classifier on future data, using the test data

In [11]:
knn.score(X_test, y_test)
Out[11]:
0.53333333333333333

Use the trained k-NN classifier model to classify new, previously unseen objects

In [12]:
# first example: a small fruit with mass 20g, width 4.3 cm, height 5.5 cm
fruit_prediction = knn.predict([[20, 4.3, 5.5]])
lookup_fruit_name[fruit_prediction[0]]
Out[12]:
'mandarin'
In [13]:
# second example: a larger, elongated fruit with mass 100g, width 6.3 cm, height 8.5 cm
fruit_prediction = knn.predict([[100, 6.3, 8.5]])
lookup_fruit_name[fruit_prediction[0]]
Out[13]:
'lemon'

Plot the decision boundaries of the k-NN classifier

In [15]:
from adspy_shared_utilities import plot_fruit_knn

plot_fruit_knn(X_train, y_train, 5, 'uniform')   # we choose 5 nearest neighbors

How sensitive is k-NN classification accuracy to the choice of the 'k' parameter?

In [17]:
k_range = range(1,20)
scores = []

for k in k_range:
    knn = KNeighborsClassifier(n_neighbors = k)
    knn.fit(X_train, y_train)
    scores.append(knn.score(X_test, y_test))

plt.figure()
plt.xlabel('k')
plt.ylabel('accuracy')
plt.scatter(k_range, scores)
plt.xticks([0,5,10,15,20]);

How sensitive is k-NN classification accuracy to the train/test split proportion?

In [18]:
t = [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]

knn = KNeighborsClassifier(n_neighbors = 5)

plt.figure()

for s in t:

    scores = []
    for i in range(1,1000):
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1-s)
        knn.fit(X_train, y_train)
        scores.append(knn.score(X_test, y_test))
    plt.plot(s, np.mean(scores), 'bo')

plt.xlabel('Training set proportion (%)')
plt.ylabel('accuracy');
In [ ]: